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I.  INTRODUCTION 

In the early 90’s, a numerical code known as the University of Miami Parabolic 

Equation (UMPE) Model was documented and made available to the general research 

community.[1]  This model was based on the split-step Fourier (SSF) technique[2], and had 

been adapted from previous versions developed by Fred Tappert at the University of 

Miami.  A subsequent version, known as the Monterey-Miami Parabolic Equation 

(MMPE) Model, was developed in the mid-90’s that was more streamlined and user-

friendly.  This code was thoroughly tested against several existing benchmark scenarios 

and was found to perform reasonably well during the Shallow Water Acoustic Modeling 

Workshop help in Monterey, CA in 1999 (SWAM’99).[3]  Since that time, however, 

various researchers who have used the MMPE Model have noticed issues with bottom 

boundary interactions.  It was assumed that this was due to the manner in which the SSF 

technique treated the bottom interface by introducing mixing functions that smeared the 

boundary discontinuity over some finite depth extent.  While this may certainly cause 

some deficiencies, some researchers (including the authors) noted specific problems with 

the treatment of bottom attenuation. 

As detailed in Ref. [3], the treatment of attenuation is the SSF algorithm is 

accomplished simply by defining a damping vector in depth at each range step, given by 

 0 ( ) ( )lossik rU z r ze e α− ∆ −∆=  , 

where lossU   becomes part of the z-space, “potential energy” propagator function.  

This simplistic approach has been questioned in the past with respect to proper treatment 



 2

of individual modal attenuation.  Until now, this approach has never formally been 

validated as accurate. 

Bottom attenuation presents subtle issues in shallow water propagation.  It is 

known to be notoriously difficult to invert for values with any degree of accuracy.[e.g., 4]  

And for most shallow water sediments, it typically has a relatively small value.  This 

makes it particularly difficult to assess when energy is trapped in the waveguide beyond 

the critical angle of incidence.  Still, for many bottom interactions, it would be expected 

to become a noticeable effect over long range. 

Careful scrutiny of the code recently revealed the error, in which the attenuation 

factor was being multiplied by the depth mesh rather than the range step.  In the code, 

this was simply a misplaced “dz” where it should have been “dr”.  With nearly 2000 lines 

of code, it was an easy error to miss.  The corrected code should provide users who have 

noted previous problems with the results they were expecting. 

In the following sections, we show results from the MMPE model, both with the 

error and with a corrected version, for a simple Pekeris waveguide.  The lack of 

sensitivity to bottom attenuation is illustrated for point source calculations.  Correct 

evaluation of bottom loss effects requires the examination of the propagation of 

individual modes.  Exact values for mode attenuation are computed and compared with 

the results of the corrected code.  We conclude the paper with a summary of findings. 
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II.  POINT SOURCE RESULTS 

For all of the work presented here, we assume the environment is that of a Pekeris 

waveguide of depth 150 m.  The sound speed in the water column is 1500 m/s with a 

density of 1.0 g/cc, while the bottom has a sound speed of 1600 m/s with a density of 1.2 

g/cc.  The bottom attenuation is provided in units of dB/km/Hz, and the water column is 

assumed to be lossless. 

Figure 1 illustrates the difficulty in observing the error for typical values of 

attenuation when a point source is utilized.  The point source is in the middle of the water 

column at 75 m transmitting a CW tone at 500 Hz.  Specifically, it compares the 

transmission loss (TL) trace at 75 m from the old code (with the error present) with the 

new code (corrected) when the attenuation parameter is set to 0.1 dB/km/Hz, a typical 

value for a sediment with the associated sound speed and density defined above.  The two 

plots are nearly identical with differences never exceeding 1 or 2 dB out to 10 km range. 

A more obvious difference is observed if the attenuation factor is increased to a 

relatively large value (perhaps unrealistic for this bottom type) of 0.5 dB/km/Hz.  A 

comparison of these results is presented in Fig. 2.  The differences between the two 

curves now approach 5 dB at 10 km range.  Still, the curves are remarkably similar, and it 

would be difficult to associate these differences with an implementation error vice some 

other computational parameter tuning (e.g., range step or depth mesh sizes).  Therefore, a 

more detailed analysis is desired, and we now turn our attention to results for propagation 

of individual modes. 
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Figure 1.  Transmission loss trace at 75 m depth in Pekeris waveguide 

described in text for point source at 75 m transmitting 500 Hz tone.  Results 
presented for old code (blue curve) and updated code (red curve) with bottom 

attenuation factor set to   dB/km/Hz. 
 

 
Figure 2.  Same results as Figure 1 with bottom attenuation factor 

increased to   dB/km/Hz. 
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III. MODE PROPAGATION RESULTS 

A simple mode code was developed to obtain the eigenvalues for the trapped 

modes of this waveguide.  These values were then fed into an altered version of the 

MMPE Model that used an analytic description of the mode structure to define the 

starting field.  Specifically, the mode shapes were sinusoidal in the water column and 

decayed exponentially in the bottom.  Differences in the mode eigenvalues and 

eigenfunctions when attenuation was non-zero were assumed to be small and neglected.  

In what follows, we shall examine results for modes 5, 15, and 25.  The corresponding 

horizontal wavenumber components were computed to be 2.09182731 m-1, 2.07118063 

m-1, and 2.02933430 m-1, respectively.  

Figure 3 shows the TL trace at 75 m for modes 5, 15, and 25 when attenuation 

was set to 0α = dB/km/Hz.  Both old and new versions of the code produce the same 

results in this case.  As expected, all three curves correspond simply to cylindrical 

spreading, i.e. ( )re1m 10logTL r= .  Some small fluctuations ( 0.5≤ dB) in the TL trace 

are observable for mode 25 at long range.  This is presumably due to the use of the 

standard normal mode eigenfunctions with the Thompson-Chapman wide-angle PE 

operators,[5,6] and possibly the use of mixing functions to smear the bottom boundary 

discontinuity.[1,3]  This effect is not considered significant in this analysis. 

In order to create noticeable effects of bottom attenuation, the bottom loss 

parameter is now set to 0.5α = dB/km/Hz.  In Fig. 4, similar TL traces for the modes are 
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displayed when the old code containing the error is used.  We find that there is little 

effect on the mode amplitudes, although a larger effect should be expected.   

 
Figure 3.  Transmission loss trace at 75 m depth in Pekeris waveguide 

described in text for modes 5 (blue curve), 15 (red curve), and 25 (green curve) at 
500 Hz with no attenuation.  Ideal cylindrical spreading plotted as black crosses 

(+). 
 

 
Figure 4.  Same as Figure 3 but modal transmission loss results computed 

using old code with bottom attenuation factor set to 0.5α =  dB/km/Hz. 
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To determine what the effect should be, we must compute the specific modal 

attenuation coefficients.  A perturbational treatment of the loss similar to that presented 

by Jensen, et al.[7] provides a means of computing the mode attenuation coefficients 

analytically.  Specifically, we define each mode attenuation coefficient as 

 ( )
( ) ( )2

, 0

e
m e m

m

z
z dz

K c z
αωδ

∞
= Ψ∫ , 

where 2 fω π=  is the angular frequency, mK  is the horizontal component of the mode 

wavenumber, ( )c z  is the depth-dependent sound speed profile, ( )m zΨ  is the mode 

eigenfunction, and ( )e zα  is the depth-dependent exponential attenuation factor.  Note 

that the units of eα  are m-1, such that a conversion to dB units is accomplished by 

defining 

 ( ) ( ) ( )-1
,dB/km/Hz m 8.686 /m m e f kHzδ δ= ×  . 

Furthermore, the mode eigenfunctions are normalized according to 

 ( )
( )

2

0
1m z

dz
zρ

∞ Ψ
=∫  . 

The results of this calculation provide mode attenuation coefficients of 5.1509x10-5 m-1, 

4.9991x10-4 m-1, and 1.7293x10-3 m-1 for modes 5, 15, and 25, respectively. 

Figure 5 displays the TL traces for the three modes computed using the corrected 

model along with the exact predictions defined by ( )re1m 10log mTL r rδ= + .  The trace 
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for cylindrical spreading only is also included for reference.  We note that the lowest 

modes (~5 or lower) still show little effect from this relatively large bottom attenuation.  

However, the higher modes begin to show significant additional loss at longer ranges.  

Furthermore, the corrected MMPE predictions of the mode propagation loss agree 

extremely well with theoretical predictions.  Thus, the code has been validated and is now 

working properly. 

 
Figure 5.  Similar to Figure 4 but modal transmission loss plots now 

computed using corrected code with bottom attenuation factor set to 0.5α =  
dB/km/Hz.  Colored crosses (blue, red, and green) also included to show 

analytical predictions of mode attenuation (for modes 5, 15, and 25, respectively). 
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IV. SUMMARY 

In this paper, an error in a previous implementation of the MMPE Model was 

identified and illustrated.  This error caused the code to underestimate the effects of 

volume attenuation in the environment.  This was most clearly observable for bottom loss 

calculations.  The code has been corrected, and was tested against analytical predictions 

of individual mode attenuation factors.  The results agree quite nicely, indicating that the 

corrected code now properly treats attenuation effects.  Updated versions of the code may 

now be obtained from the Ocean Acoustics Library website at 

http://www.hlsresearch.com/oalib/PE/MMPE.   
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